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We analyzed bifurcations of periodic regimes generated in the systems of two identical relaxation oscillators
under strong coupling through a ‘‘slow’’~inhibitory! variable. It was numerically shown that complex spa-
tiotemporal behavior is observed near the boundaries of stability of the known antiphase periodic attractor and
inhomogeneous steady states. Specifically, the following attractors were found:~i! a set of cycles of the
antiphase type, each of which consists of one full-amplitude excursion and of the different number of small-
amplitude high-frequency oscillations~the period of antiphase mixed-mode regimes is much greater than that
of simple antiphase oscillations!, ~ii ! inhomogeneous regimes of the above described type~out-of-phase mixed
mode! with unequal numbers of small oscillations for different oscillators,~iii ! period doubling cascades of the
out-of-phase mixed mode that lead to the appearance of chaotic attractors. We showed that the modes found
are not specific for our particular model; however, they are common for several classes of models and sensitive
to the stiffness of oscillators. We discuss also conditions for the generation of such regimes.@S1063-
651X~96!06806-7#

PACS number~s!: 05.45.1b, 47.20.Ky, 82.40.Bj

I. INTRODUCTION

In coupled oscillatory systems, the primary interest was
directed to the question of how local oscillators are entrained
to common collective oscillations. The studies of coupled
oscillatory units are useful for the understanding of spa-
tiotemporal patterning in electronics@1,2#, physiology @3#,
chemistry@4,5#, etc. Relaxation oscillators represent an im-
portant class of nonlinear systems describing many natural
and artificial phenomena characterized by very different time
scales@6–10#.

Since the work of Lefever and Prigogine@11# the behav-
ior of two coupled oscillators was a subject of extensive
investigations. It was shown that the simplest diffusive cou-
pling of identical oscillators can provide the existence of the
antiphase limit cycle that is realized in many models@6,12–
15#. The antiphase limit cycle may be considered as the uni-
versal model-independent attractor@14,16–18#. In this mode,
the wave forms of both oscillators are identical except for a
half-period shift. In addition to periodic modes, stable sta-
tionary states emerge because oscillators may stop each other
due to coupling. The chemical@6,12# and electronic@19#
experiments confirmed the existence of the 180° out-of-
phase regime and inhomogeneous steady states@20# and
showed a general character of these modes and their insen-
sitivity to noise and other experimental details, including
weak nonidenticality.

Bistability of the in-phase and antiphase limit cycles was
studied in the framework of membrane model of cell cycle
regulation@21#. It was shown that the bistability of the two
periodic regimes in the phase diagram is a typical phenom-
enon and the stiffer the oscillators, the larger the volume of
parameter space involved in the bistability region. The coex-
istence of several periodic solutions was investigated in de-
tail for two Brusselators taken not far from the Hopf bifur-
cation @22#. In this area of parameters, the wave forms are
smooth enough and the phase diagram is very rich.

In this paper, we concentrate onstiff oscillators coupled

through their slow variables and find unusual regimes of the
out-of-phase type that are realized in the range of strong
interactions~near the stable inhomogeneous steady-state re-
gion!. These regimes look like they are ‘‘bursting’’ and are
characterized by the existence of small-amplitude high-
frequency oscillations that alternate with the single large-
amplitude long-period cycle. In the partial phase plane
(Xi , Yi) they appear as small loops on the partial ‘‘limit
cycle’’ ~more exactly, on the projection of the four-
dimensional limit cycle in the partial phase plane!. Following
@23#, we will call these regimes mixed mode. However, the
similarity of the mixing mechanisms described for three-
variable oscillators@23,24# and for the coupled two-variable
oscillators should be considered separately.

Despite seeming temporal complexity, the mixed-mode
regime is symmetrical with respect to a half-period shift. A
detailed continuation of this regime in parameters permits a
break of the symmetry to be revealed. A break of the sym-
metry gives rise to the spatially inhomogeneous limit cycles
~out-of-phase mixed mode! that have the loops on different
parts of trajectories of the two oscillators.

II. MODELS

A. Membrane oscillator

The membrane model is a result of the reduction of many
equations describing the process of lipid peroxidation in bio-
logical membranes@25#, and may be simplified and written
in the dimensionless form
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The parameter« specifies the time scale and is varied be-
tween 0.1 and 0.001. HereX, Y are dimensionless concen-
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trations of radicals~‘‘fast’’ variable! and lipids ~‘‘slow’’
variable!, respectively.k, g, d, D, h are the rates of influx
and efflux of participants. The first four rates are fixed here-
after and onlyh will be considered as a bifurcation param-
eter for different«.

Let us summarize essential features of the oscillator:
~i! The form of the limit cycle and consequently the am-

plitudes of variables are remarkably insensitive to changes in
the bifurcation parameterh at least up toh52.8 because
h does not enter Eq.~1a! for the N-shaped nullcline. The
phase portrait of the membrane oscillator for different« and
the time seriesX(t) andY(t) are presented in Figs. 1 and 2,

respectively.
~ii ! The period strongly depends on the value of the bifur-

cation parameterh as it is shown in Fig. 3. Such a depen-
dence of the period on the control parameter is typical of the
Hopf bifurcation with the canard transition@21#, which hap-
pens ath'1.73. The period has afinite maximum value.
The nearly vertical solid line corresponds to a very narrow
region where Hopf’s limit cycle develops into a large ampli-
tude limit cycle. Ash increases, the cycle disappears via
subcritical the Hopf bifurcation ath'3.85. This bifurcation
assumes~see Fig. 3! that two attractors~the stable focus and
stable limit cycle! coexist in a region around the bifurcation
point. The width of the bistability region strongly depends on
the value of the relaxation parameter«: the greater the stiff-
ness, the narrower the region.

~iii ! The form of oscillationsX(t), Y(t) for «,0.05 is
highly asymmetrical~Fig. 2!, i. e., the times spent on left
(Tle f t) and right (Tright) branches of theN-shaped nullcline
dX/dt50 are very different:Tle f t@Tright@Tjump , where
Tjump is the time of jumps between the nullcline branches.
The degree of asymmetry will be characterized by the ratio
a5Tle f t /Tright , which grows as the system approaches the
singular bifurcation ath.1.73~Fig. 3!. This occurs because
the phase rate of a representative point in the vicinity of
Ycrit ~see Fig. 1! tends to zero but the form of the cycle
remains unchanged~except for a very narrow region of the
Hopf bifurcation with the canard transition!. The degree of
asymmetry of the oscillator is essential for generating inho-
mogeneous regimes in the system of coupled oscillators~see
@21#!.

B. The Brusselator

In order to check the generality of results obtained, we
use the popular Brusselator, which is a typical model of the
so-calledl-oscillators with classical supercritical Hopf’s bi-
furcation of the cycle birth. The well known equations for
the Brusselator are presented here for the sake of conve-
nience:

dX

dt
5A2~B11!X1X2Y, ~2a!

FIG. 1. The phase portrait of system~1! for g50.5, d50.15,
k50.05,D50.2 fixed throughout this paper.h52.56. Other des-
ignations are explained in the text.

FIG. 2. The time series of~1! for ‘‘fast,’’ X(t), and ‘‘slow,’’
Y(t), variables forh52.56, «50.03.

FIG. 3. Period and asymmetry of individual oscillations as a
function of h for «50.01. The Hopf bifurcation with the canard
transition occurs ath.1.73.
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dY

dt
5BX2X2Y. ~2b!

We choseA52 andB large enough in order to ensure
that the Brusselator was a relaxation oscillator in whichY is
a slow variable. The steady state of the systemXs5A,
Ys5B/A loses stability ifB5A211 at supercriticalHopf
bifurcation, and a stable limit cycle appears. In contrast to
the membrane oscillator, the Brusselator has a trianglelike
phase portrait. The size of the limit cycle and the period of
the oscillations are proportional to (B11)2.

We will consider two identical oscillators coupled sym-
metrically but through a semipermeable membrane. It means
that the diffusive termC(Yi112Yi), i51, 2 is added only to
the second equation of each oscillator:

dXi
dt

5F~Xi ,Yi !,

dYi
dt

5G~Xi ,Yi !1C~Yi112Yi !, ~3!

i51,2.

The coupling we use is not the most general because we
disregard coupling through the fast variables, but such a sim-
plification is justified for relaxation systems in which inho-
mogeneous regimes may be destroyed by coupling through
the fast variable exchange affecting the most sensitive slow
part of the cycles~see also@17,18#!.

It should be noted that, for two membrane oscillators, the
form and the amplitude of the cycle remain almost un-
changed when we vary the stiffness («), asymmetry~as a
function ofh), and diffusive coupling strength (C), whereas
any variation ofA,B,C in the system of two coupled Brus-
selators significantly affects the form and the amplitude of
the cycle and thereby changes the diffusion flow between
Brusselators. In particular, comparing the results for very
different values ofB, it would be reasonable to rescale the
values ofC in order to provide the same intensity of diffu-
sion.

III. METHODS

All the results presented below are based upon numerical
computations. We used an explicit fourth order~double pre-
cision! Runge-Kutta routine with step size control~subrou-
tine named DRKGS from the old scientific library SSP!,
which is a good and reliable method for equations that are
not very stiff. Checking the existence of spurious solutions
~when we had some doubts! was performed using the pack-
ageAUTO @26#. AUTO was used in both parametrical analysis
of steady states and investigation of periodic solutions near
their bifurcations. Special attention was paid to the analysis
of transient regimes. We examined periodic solutions ob-
tained with DRKGS and implicit integrators~RADAU5 was
found to be very useful! and found no difference between
them within the limits of the computational errors.

It was a problem to search for solutions for the desirable
values of the parameters. We adopted the following simple
strategy: starting from a random initial point, we solved the

chosen equations until an asymptotic behavior~‘‘attractor’’ !
was obtained with the needed accuracy. This attractor was
classified. The procedure was repeated for another initial
point. The strategy found different types of coexisting attrac-
tors for the chosen set of parameters. We then changed the
parameters and repeated the whole procedure.

IV. RESULTS

A. Overview of basic solutions

The large-scale phase diagrams of the system of coupled
membrane oscillators in the (C,h)-parameter plane for
«50.15, 0.03 are shown in Fig. 4. The antiphase stable pe-
riodic solution~the wave form is presented in Fig. 5! occu-
pies an essential part of the control parameter plane (C,h).
The regime coexists with the in-phase solution, which is
stable everywhere over the presented phase diagram. We
also found that, for strong coupling, bistability between the
antiphase mode and inhomogeneous steady states is possible
but only if the stiffness of the coupled oscillators is greater
than a certain critical value. For the membrane oscillator it
means that«,0.12 orA.1.23 for Brusselator. The coexist-
ence of three stable attractors~the in-phase and antiphase
regimes and inhomogeneous steady states! occurs~see Fig. 4
for «50.03) without an infinite period bifurcation, which is
typically expected@6# in such a situation. To study the new
relations between the antiphase regime and inhomogeneous
steady states the evolution of the antiphase limit cycle should
be investigated in the vicinity of the overlapping area.

B. Two kinds of antiphase solutions

The parameter continuation performed usingAUTO shows
that the stable antiphase solution ends in the pitchfork bifur-
cation BP~Fig. 6! or fold type catastrophe~dangerous bifur-
cation in terms@27# because the system abruptly changes its
behavior!. The ordinate gives the norm of the solutions,
which is defined as

FIG. 4. The phase diagram of~1! on the (C, h) plane for
«50.15, 0.03. The regions of antiphase oscillations are outlined by
the dashed lines. The shadowed region corresponds to the localiza-
tion of mixed-mode cycles. Solid lines are boundaries of the region
of the inhomogeneous steady states.
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whereT is a period. The antiphase mode loses stability as
coupling is increased but its period increases only slightly,
even if the mode overlaps with the stable inhomogeneous
steady states.

The system of coupled oscillators~1! was solved by direct
integration under more intensive coupling in order to find
new regimes onto which the system settles after the pitchfork
bifurcation. We discovered a set of solutions which are char-
acterized by the presence of the different numbers of loops
on the phase portrait. Figures 7~a,b! present an example of
waveforms and the phase portrait of the limit cycle with six

loops. It is easy to see that the large parts of the trajectories
consist of the high-frequency low-amplitude oscillations.
The full period of the mixed-mode cycle is typically signifi-
cantly greater than that of the antiphase mode. The wave
forms the mixed-mode cycles are invariant with respect to
the T/2 time shift. Therefore, we will call these solutions
‘‘antiphase mixed modes.’’ This four-dimensional limit
cycle has coincidental projections in the (Xi ,Yi) planes of
each oscillator.

The area in the parameter plane that contains antiphase
mixed-mode cycles is enlarged in Fig. 8 to clarify the details.
The dotted line is the boundary of the stable inhomogeneous
stationary solutions. The set of stripes marks the areas cor-

FIG. 5. The wave forms of the slow variablesY1 ,Y2 for the
antiphase limit cycle,h52.56,C50.52, «50.03.

FIG. 6. Continuation of antiphase and one-looped mixed-mode
solutions forh52.56,«50.03. Solid curves denote asymptotically
stable solutions, and dashed curves denote unstable solutions.

FIG. 7. The wave form~a! and phase portrait~b! of the an-
tiphase mixed-mode regime ath52.56,C50.55.
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responding to antiphase mixed-mode limit cycles with differ-
ent numbers of loops. One can see in Fig. 8 that the stable
antiphase mixed-mode and simple antiphase regimes can co-
exist ~the dashed line is a continuation of BP along the
branch of the antiphase solution!. It is essential to note that
the more stiff the isolated oscillator is, the larger the area that
is occupied by the mixed-mode~regardless of the number of
loops!, and the smaller the sizes of the loops.

The appearance of antiphase mixed-mode cycles may be
considered a result of the interaction between the antiphase
mode and a spatially inhomogeneous limit cycle~ILC! that
emanates via the Hopf bifurcation~see @18#! of the stable
inhomogeneous steady state. The ILC locates around an un-
stable focus that is an inhomogeneous stationary solution
outside the region of stable inhomogeneous steady states.
This four-dimensional limit cycle has noncoincidental pro-
jections in the (Xi ,Yi) planes of each oscillator~see Fig. 9!.
The frequency of small oscillations in the mixed mode cor-
responds to the frequency associated with the unstable focus
and the ILC. The ILC’s are ‘‘separatrix’’ cycles that charac-
terize the part of the phase flow oscillating around the focus.

When parameters are chosen near the area of stable inho-
mogeneous states, a part of the antiphase cycle passes close
to the unstable focus. If coupling is great enough, the repre-
sentative point is captured by the rotating field of the focus.
This part of the cycle is then replaced by a helical trajectory
with one or more winds.AUTO shows that the substitution is
not a bifurcation to the torus or period doubling. The one-
parameter continuation of the one-looped mixed-mode cycle
~Fig. 6! discovers that this regime manifests as a closed
curve without any evidence of bifurcations to other attrac-
tors. Such solutions are typically referred to as ‘‘isolas.’’
One-, two- andn-looped mixed-mode regimes appear as iso-
lated solutions and coexist with the neighbors.

Inside the stripes of the multilooped mixed-mode regimes,
the phase flux around the inhomogeneous focus is very com-
plex, because the ILC’s undergo the period doubling bifur-
cation sequence. The set of ILC families with numerous lo-
cal maxima was studied in@22#, but for very strong coupling
(C;10) of two Brusselators taken near the Hopf bifurcation.
It was shown that the infinity of periodic solutions and cha-
otic attractors exist. Using the packageAUTO we found that
for the coupled membrane oscillators all the ILC’s are al-
ways unstable and are located inside the strip along the
boundary of the inhomogeneous steady states. Their ampli-
tudes and frequencies correspond to those of the small oscil-
lations in the antiphase mixed mode. That is why the bound-
ary of the parameter set at which the ILC exists~dashed and
dotted lines in Fig. 8! outlines the region on parameter plane
where the system of oscillators~1! has mixed-mode cycles.

Any antiphase limit cycles found for the model of coupled
membrane oscillators can be bistable with the inhomoge-
neous steady states~although the areas of overlapping are
very small!. The penetration of the mixed-mode regime into
the inhomogeneous steady-state area is a specific feature of
the model~1!. The period of the mixed-mode regime de-
pends on the number of loops; the functionT(C) demon-
strates infinite period bifurcation in the area of overlap with
the inhomogeneous steady states~Fig. 10!, whereasAUTO
continuation of the simple antiphase solution in two param-
eters shows that this stable periodic solution has thefinite
period everywhere along the boundary of its extinction.

The phase diagram for two coupled Brusselators taken far
from the Hopf bifurcation of their birth is almost the same as
that for membrane oscillators, but there is the parameter set
where the ILC’s are stable@18,22#. The regions correspond-
ing to the anti-phase mixed-mode regimes, the ILC, and
stable inhomogeneous steady states are shown in Fig. 11.
The strip of the one-looped mixed-mode cycle is drawn~de-
noted by 1!, but other strips of the 2-, and 3- looped cycles
are too narrow to be pictured on this scale. WhenC is in-
creased butB is fixed the period of the mixed-mode regime
grows but does not tend to infinity because inhomogeneous
steady states are unstable. Moreover, penetration of the
mixed-mode regime into the area of the stable inhomoge-
neous steady states is impossible: the stable ILC separates
them from the inhomogeneous steady states. We believe that
the antiphase mixed-mode regimes are disinct from the one-
looped solution observed by Shreiberet al. ~Fig. 11 in @22#!
because the latter solution undergoes an infinite period bifur-
cation due to the lengthening of the flat part of the trajectory.
Its loop is not linked with the rotation around the inhomoge-

FIG. 8. The small scale phase diagram for mixed-mode solu-
tions for «50.03. The numbers mark the regions withn-looped
cycles. The thick solid line outlines the region of all kinds of
mixed-mode regimes. Other designations are indicated in the text.

FIG. 9. The projection of phase portrait of the inhomogeneous
limit cycle ~ILC! in comparison with one of the in-phase cycle.
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neous steady state so the loop appears under smaller values
of coupling than these steady state.

C. Symmetry breaking bifurcation

Each of the antiphase mixed-mode solutions of~1! bifur-
cates via the symmetry breaking bifurcation BP~open square
in Fig. 6! to the secondary branch containing stable unsym-
metrical solutions. Figure 12 shows the regime where the
first oscillator has no loop at the lower part of the wave form
while the second one has one loop demonstrating breaking of
the spatiotemporal symmetry. Such attractors emerge typi-
cally as the boundaries between the antiphase mixed-mode
regimes withN andN11 number of loops~although it is not
obligatory!. The parametrical continuation made byAUTO

shows that the branch of the out-of-phase mixed-mode solu-
tions is an isola~see Fig. 13!. The unsymmetrical solutions
produce a tertiary periodic branch via the period doubling
bifurcation and so on. We found here a cascade of period
doubling bifurcations and, therefore, there is an infinite
structure of stable periodic and nonperiodic solutions in the
region of parameters. The cross-hatched area in Fig. 8 shows
the parameter set where quasiperiodic and chaotic regimes
have large basins of attraction.

V. DISCUSSION

It is well known that the coupling of even identical oscil-
lators can result in the appearance of a variety of attractors,
including the stable inhomogeneous steady states. The an-
tiphase regime was found in many systems and was proved

FIG. 10. Period of antiphase mixed-mode cycles vs the coupling
C at h52.58, «50.03.

FIG. 11. The phase diagram for two coupled Brusselators at
A52. The thick solid line outlines the region of all kinds of mixed-
mode regimes.

FIG. 12. The wave form of the out-of-phase mixed-mode cycle
for ~1! at h52.485,C50.57, «50.03.

FIG. 13. Bifurcation diagram of the out-of-phase mixed-mode
cycle. Period doubling bifurcations are denoted by PD.
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analytically for the case of weak coupling@16,15#. It has
been shown already that the antiphase regime that exists in
the system of relaxation oscillators under strong coupling has
the peculiarities that might be essential for the interpretation
of biological and chemical experiments@6,18#.

The mixed-mode regime should be outlined, first, as a
periodic solution that possesses the second time scale in ad-
dition to the period of the antiphase solution. For very stiff
oscillators these high-frequency oscillations are practically
unobservable and the coupling changes only the amount of
time spent by the system on different parts of the trajectory.
Under the intermediate stiffness, the presence of the second
time scale should be taken into account if the influence of
external oscillator would be considered, for example.

Second, an analysis of the full phase diagram shows that
there is such a region of the control parameters where the
mixed-mode regime transits to the inhomogeneous steady
states via infinite period bifurcation~see Fig. 10!. Besides,
the antiphase mixed-mode cycles can coexist with the an-
tiphase regime and the stable inhomogeneous steady states,
providing a hysteresis between these attractors.

Another interesting regime is the inhomogeneous limit
cycle. Generally speaking, the ILC should be considered as a
typical oscillatory pattern because one type of the ILC
emerges from the inhomogeneous steady state via the Hopf
bifurcation, e.g., if the coupling strength decreased. For the

oscillators with theN-shaped nullcline, the amplitude of the
stable ILC is so small that the ILC is practically indistin-
guishable in the steady state~except for the oscillatory exter-
nal signal of appropriate frequency!.

The model~1! demonstrates the out-of-phase mixed-mode
cycles~see Fig. 12 as an example!. These cycles are observ-
able for the intermediate stiffness only (0.01,«,0.06). De-
spite the small areas occupied by these solutions in a param-
eter plane, they seem to be of principle importance because
their existence may be considered as the phenomenon ‘‘bro-
ken spatio-temporal symmetry’’ but for the limit cycles.

A comparison of coupled membrane oscillators~1! with
coupled Brusselators shows that the properties examined are
general and are realized if the stiffness is greater than a cer-
tain critical value. The observability of these peculiarities is
quite problematical due to the small areas of hysteresis on
the phase diagram and small amplitude of loops in the
mixed-mode regime. But if the experimental system has the
parameters that robustly control the stiffness and the position
of oscillators with respect to the bifurcation of their birth,
then the obtained regimes and transitions may be observed.
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